Two-Step Newton-Tikhonov Method for Hammerstein-Type Equations: Finite-Dimensional Realization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of an $L^p$-solution for two dimensional integral equations of the Hammerstein type

In this paper‎, ‎existence of an $L^p$-solution for 2DIEs (Two‎ ‎Dimensional Integral Equations) of the Hammerstein type is‎ ‎discussed‎. ‎The main tools in this discussion are Schaefer's and‎ ‎Schauder's fixed point theorems with a general version of‎ ‎Gronwall's inequality‎.

متن کامل

An Application of Newton Type Iterative Method for Lavrentiev Regularization for Ill-Posed Equations: Finite Dimensional Realization

In this paper, we consider, a finite dimensional realization of Newton type iterative method for Lavrentiev regularization of ill-posed equations. Precisely we consider the ill-posed equation F (x) = f when the available data is f with ‖f − f‖ ≤ δ and the operator F : D(F ) ⊆ X → X is a nonlinear monotone operator defined on a real Hilbert space X . The error estimate obtained under a general s...

متن کامل

existence of an $l^p$-solution for two dimensional integral equations of the hammerstein type

in this paper‎, ‎existence of an $l^p$-solution for 2dies (two‎ ‎dimensional integral equations) of the hammerstein type is‎ ‎discussed‎. ‎the main tools in this discussion are schaefer's and‎ ‎schauder's fixed point theorems with a general version of‎ ‎gronwall's inequality‎.

متن کامل

ANALYTICAL-NUMERICAL SOLUTION FOR NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE

Using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of Hammerstein type . The mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). The procedure of this method is so fast and don't need high cpu and complicated programming. The advantages of this method are that we can applied for those integral equations whi...

متن کامل

A New Collocation - Type Method for Hammerstein Integral Equations

We consider Hammerstein equations of the form y(i)=f(t)+(hk(t,s)g(s,y(s))ds, te[a,b], J a and present a new method for solving them numerically. The method is a collocation method applied not to the equation in its original form, but rather to an equivalent equation for z(t):= g(t,y(t)). The desired approximation to y is then obtained by use of the (exact) equation y(t)=f(t) + fh k(t,s)z(s)ds, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISRN Applied Mathematics

سال: 2012

ISSN: 2090-5572

DOI: 10.5402/2012/783579